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Abstract
We investigate solitary excitations in a model of a one-dimensional
antiferromagnet including a single-ion anisotropy and a Dzyaloshinsky–Moriya
antisymmetric exchange interaction term. We employ the Holstein–Primakoff
transformation, the coherent state ansatz and the time variational principle.
We obtain two partial differential equations of motion by using the method of
multiple scales and applying perturbation theory. By so doing, we show that
the motion of the coherent amplitude must satisfy the nonlinear Schrödinger
equation. We give the single-soliton solution.

1. Introduction

The study of nonlinear excitations in one-dimensional (1D) magnetic systems has attracted a
great deal of theoretical and experimental interest in the last five decades and continued to be
the subject of numerous investigations [1, 2]. It is well known that the ferromagnetic (FM) and
antiferromagnetic (AFM) chain compounds such as CsNiF3 and TMMC [(CH3)4NMnCl3] are
systems exhibiting soliton-like excitations [2]. Several theoretical and experimental methods
for studying nonlinear excitations of 1D and 2D magnets have been proposed [2–9]. One of
the most interesting methods is that of coherent state treatment. In the spin–coherent state
representation, the exact nonlinear equation of motion for the system is obtained directly with
spin operators without any approximations as regards the Hamiltonian [10]. Other coherent
state treatments use a truncated Holstein–Primakoff transformation of the spin operator S±

j and
further approximate the Hamiltonian in the boson operators [11, 12]. Huang et al investigated
solitary excitations in the alternating FM Heisenberg chain and in the biquadratic anisotropic
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spin chain [13–15], using Glauber’s coherent state representation. Nguenang et al investigated
solitary excitations including localized and delocalized structures using the coherent state
representation [16–18]. They set up a hierarchy of bound states induced by a wave train, and
they observed the localization phenomenon realized by the presence of an intrinsic localized
mode in a 1D Heisenberg ferromagnet [17]. Liu et al studied the solitary excitations in order-
parameter-preserving AFM in systems such as CsFeBr3, using a coherent state ansatz [19–22].

For most of the above-mentioned studies on the corresponding materials, the model
Hamiltonian includes a single-ion anisotropy in addition to the exchange energy and a Zeeman
term. However, materials such as BaCu2M2O7 (M = Si,Ge) [23, 24], La2CuO4 [25],
Yb4As3 [26], YVO3–SrVO3 [27] and CuGeO3 [28–30] cannot be described with a simple
Hamiltonian. Experimental investigations of high field neutron scattering measurements and
electron paramagnetic resonance investigations have shown that the Dzyaloshinsky–Moriya
(DM) interaction plays an important role for these materials [26, 31, 32]. Despite their
importance, there has been little work on the nonlinear dynamics of a 1D Hamiltonian including
the DM interaction term. Zaspel used a classical approach for the investigation of topological
solitons [33]. The quantum soliton in Cu benzoate materials [34] was studied through a
different approach. Reference [34] uses a transformation and approximations that lead to
a Hamiltonian which provides a grasp of the essentials of quantum fluctuations [34]. A
renormalization group method and a quantum field theoretic approach led to a sine–Gordon
system and a gap was obtained. This model system can be used to describe topological solitons
such as kinks. As in the case of CsNiF3, a study of the solitary excitations in the large density
limit would be interesting in such systems. For the study of nonlinear excitations in the AFM
chain with DM antisymmetric exchange interactions [35, 36], the coherent state ansatz should
now be applied in a straightforward way. In this paper we study a model Hamiltonian including
DM antisymmetric exchange interactions. We employ the Holstein–Primakoff transformation
and the coherent state ansatz and investigate nontopological solitary wave solutions. We predict
the possibility for a transition from nontopological solitary wave excitations to a topological
solitary wave solution in the system.

This paper is organized as follows. In section 2, we employ the Holstein–Primakoff
transformation and the coherent state ansatz, and obtain two partial differential equations of
motion from the Hamiltonian. Then we use the long wavelength approximation and the method
of multiple scales. Hence, we reduce these equations to envelope function equations and find
that the amplitude function satisfies a nonlinear Schrödinger equation. In section 3, we use the
inverse scattering transformation to obtain a single-soliton solution. The last section is devoted
to the conclusions.

2. Model Hamiltonian and equations of motion

The Hamiltonian of the AFM system with DM antisymmetric exchange interactions under
consideration is given by

H = J
∑

l

(�S A
l

�SB
l + �S A

l+1
�SB

l

)
+ D�z

∑

l

(�S A
l �

�SB
l + �S A

l+1�
�SB

l

)

+ A

[
∑

l

(
S A

lz

)2 +
∑

l

(
SB

lz

)2

]
(1)

where J > 0 is the exchange parameter, and D > 0 and A > 0 measure the strength of the
DM interaction and the single-ion anisotropy, respectively. The Landé factor is g, and μB is
the Bohr magneton. The symbol � stands for the vector product. We consider only nearest-
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neighbour interactions. The AFM is divided into two interpenetrating sublattices A and B . We
use the Holstein–Primakoff transformation [37]

S A+
l =

(
2S − a†

l al

)1/2
al; S A−

l = a†
l

(
2S − a†

l al

)1/2 ; S A
lZ = S − a†

l al (2)

SB+
l = b†

l

(
2S − b†

l bl

)1/2 ; SB−
l =

(
2S − b†

l bl

)1/2
bl; SB

lZ = −S + b†
l bl (3)

where the al (a
†
l ) and bl (b

†
l ) are annihilation (creation) operators associated with the A and

B sublattices and S is the magnitude of the spin operator. With this transformation, the
Hamiltonian turns out to be bosonized. For the usual spin wave approximation we use only
quadratic terms in the bosonized Hamiltonian. We will look for localized nonlinear spin
excitations. In order to calculate such large amplitude collective modes we use the coherent
states method [15–20, 38]. We define αl , βl as the coherent state amplitudes satisfying the
relations al |ψ(t)〉 = αl |ψ(t)〉, bl|�(t)〉 = βl |�(t)〉, and |0〉 is the vacuum state of the boson
system. Then using the time dependent variational principle as in [19–22, 39], we obtain the
equations of motion for the coherent state amplitudes αl and βl as

ih̄
dαl

dt
= [J S + A(1 − 2S)]αl + (J − iD)S(β∗

l + β∗
l−1)+ 2A|αl |2αl

− 1
4 (J − Di)(|βl |2β∗

l + |βl−1|2β∗
l−1)− 1

2 (J − iD)|αl |2(β∗
l + β∗

l−1)

− 1
4 (J + iD)(βl + βl−1)α

2
l − Jαl(|βl |2 + |βl−1|2)

− 1

32S
[(J − iD)α2

l |βl|2βl + (J + iD)α2
l βl + (J − iD)|βl |2β∗

l

+ (J − iD)α2
l |αl |2βl] − 1

32S
[3(J − iD)|αl |4β∗

l + 2(J − iD)|αl |2β∗
l

+ 4(J − iD)|αl |2|βl |2β∗
l + (J − iD)|βl |4β∗

l ] (4a)

ih̄
dβl

dt
= [J S + A(1 − 2S)]βl + (J − iD)S(α∗

l + α∗
l+1)+ 2A|βl |2βl

− 1
4 (J − iD)(|αl |2α∗

l + |αl+1|2α∗
l+1)− 1

2 (J − iD)|βl |2(α∗
l + α∗

l+1)

− 1
4 (J + i D)(αl + αl−1)β

2
l − Jβl(|αl |2 + |αl+1|2)

− 1

32S
[(J − iD)β2

l |αl |2αl + (J + iD)β2
l αl + (J − iD)|αl |2α∗

l

+ (J + iD)β2
l |βl|2αl ] − 1

32S
[3(J − iD)|βl |4α∗

l + 2(J − iD)|βl |2α∗
l

+ 4(J − iD)|αl |2|βl |2α∗
l + (J − iD)|αl |4α∗

l ] (4b)

where α∗
l , β

∗
l are complex conjugates of αl , βl . Linearizing equations (4a) and (4b), we obtain

the linear dispersion relation

h̄ω± = A (1 − 2S)± 2S
{(

J 2 + D2
) (

sin2 (ka)
)}1/2

, (5)

where the symbol (±) labels the two branches: ω+ denotes the ‘optic branch’ and ω− the
‘acoustic branch’, by analogy with the phonon case. The dispersion curve is shown in figure 1,
which shows a gap at the edge of the Brillouin zone, i.e. for k = kB = 0, πa . The ‘optical
branch’ ω+ has a maximum value ωmax and a minimum value ωmin, while the ‘acoustic branch’
ω− also has corresponding maximum and minimum values ω− max and ω− min. It is also
important to mention that unlike in the case of dynamics of the lattice when k = 0, ω− max �= 0,
the excitation energy does not vanish in the long wavelength approximation.

We stress that in the low temperature excitations, the introduction of a coherent state helps
in projecting out the unphysical boson states provided that no essential information is lost in
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Figure 1. The spectrum of the frequencies shows how the solitary excitation frequencies enter into
the frequency gap of the linear dispersion relation. This is the proof for the nonlinear localized
vibration modes in the antiferromagnetic chain with the DM exchange interaction.

this treatment. In this respect, working with the boson operators should also lead to keeping
essential features of our one-dimensional AFM spin chain with the DM interaction.

Equations (4a) and (4b) are difficult to solve since they are nonlinear, discrete and
coupled. We assume the characteristic wavelength λ0 of the solitons to be larger than the
lattice constant 2a, i.e. λ0 � 2a, then we can take the long wavelength approximation, i.e.

αl(t) → ψ1 (x, t) ; αl±1(t) → ψ1(t)± ηψ1x + 1

2!η
2ψ1xx ± 1

3!η
3ψ1xxx + O

(
η4

)
(6)

βl(t) → ψ2 (x, t) ; βl±1(t) → ψ2(t)± ηψ2x + 1

2!η
2ψ2xx ± 1

3!η
3ψ2xxx + O

(
η4

)
(7)

where η = 2a/λ0 is a small dimensionless parameter. Substituting equations (6) and (7) into
equations (4a) and (4b), and retaining only terms up to O(η2) and neglecting the constant terms
whose presence does not modify the form of the solution, the equations of motion become

ih̄
dψ1

dt
= [J S + A (1 − 2S)]ψ1 + SU

(
2ψ2 − ηψ2x + 1

2
η2ψ2xx

)∗
− 1

2
U |ψ2|2ψ∗

2

− 1
2U |ψ1|2

(
2ψ2 − ηψ2x + 1

2η
2ψ2xx

)∗ − 1
4U∗ψ∗

2

(
2ψ2 − ηψ2x + 1

2η
2ψ2xx

)

− 2J |ψ2|2ψ1 + 2A |ψ1|2 ψ1 − 1

32
U∗ψ2

1ψ2 − 1

32S
U |ψ2|2 ψ∗

2

− 1

16S
U |ψ1|2 ψ∗

2 (8)

ih̄
dψ2

dt
= [2J S + A(1 − 2S)]ψ2 + SU

(
2ψ1 − ηψ1x + 1

2
η2ψ1xx

)∗
− 1

2
U |ψ1|2 ψ∗

1

− 1
2U |ψ2|2

(
2ψ1 − ηψ1x + 1

2η
2ψ1xx

)∗ − 1
4U∗ψ∗

2

(
2ψ1 − ηψ1x + 1

2η
2ψ1xx

)
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− 2J |ψ1|2ψ2 + 2A |ψ2|2 ψ2 − 1

32
U∗ψ2

2ψ1 − 1

32S
U |ψ1|2 ψ∗

1

− 1

16S
U |ψ2|2 ψ∗

1 (9)

where U stands for a complex number given by U = J − iD and U ∗ is its complex conjugate.
To solve equations (8) and (9), we use the method of multiple scales [40, 41] which will

help in reducing these equations to a system of nonlinear equations which allows us to find the
slowly varying components of functionsψ1 and ψ2 [36]. To this end we introduce length scales
x j = μ j x and timescales t j = μ j t (μ � 1, j = 1, 2, 3 . . .) which are considered independent.
In this consideration, the first spatial and temporal derivatives and the expansions of quantities
ψ1, ψ2 are

∂

∂ t
= μ

∂

∂ t1
+ μ2 ∂

∂ t2
+ μ3 ∂

∂ t3
+ · · · , (10a)

∂

∂x
= μ

∂

∂x1
+ μ2 ∂

∂x2
+ μ3 ∂

∂x3
+ · · · . (10b)

ψ1 = μψ
(1)
1 + μ2ψ

(2)
1 + μ3ψ

(3)
1 . . . (11a)

ψ2 = μψ
(1)
2 + μ2ψ

(2)
2 + μ3ψ

(3)
2 . . . . (11b)

Here, ψ( j)
1 andψ( j)

2 depend on x j and t j . Substituting equations (10) and (11) into equations (8)

and (9) and collecting terms with equal power of μ, the following equations for ψ( j)
1 , ψ( j)

2 are
obtained:
(

ih̄
∂

∂ t
− ωk

)
ψ
( j)
k − Gkψ

( j)∗
m = φ

( j)
k (12)

ωk = δ1 J S + A(1 − 2S) (13)

Gk = SU

(
2 + δ2η

∂

∂x
+ 1

2
η2 ∂

2

∂x2

)
(14)

φ
(1)
k = 0 (15)

φ
(1)
k = −ih̄

∂(ψ
(1)
k )

∂ t1
+ δ2SUη

∂ψ(1)∗m

∂x1
+ SUη2 ∂

2(ψ(1)∗m )

∂x∂x1
(16)

φ
(3)
k = −ih̄

∂(ψ
(1)
k )

∂ t2
− ih̄

∂(ψ
(2)
k )

∂ t1
+ δ2SUη

(
∂ψ

(1)∗
l

∂x2
+ ∂ψ

(2)∗
l

∂x1

)

+ SUη2

2

(
2∂2ψ

(1)
l

∂x∂x2
+ ∂2ψ

(1)
l

∂x2
1

+ 2
∂2ψ

(2)
l

∂x∂x1

)∗
− 1

2
U

∣∣ψ(1)m

∣∣ψ(1)∗m

− 1
2U |ψ1

k |2 (
2ψ1

m + ηψ(1)mx + 1
2η

2ψ(1)mxx

)∗

− 1
4U∗ψ(1)

2

k

(
2ψ1

m + ηψ(1)mx + 1
2η

2ψ(1)mxx

)

− 1
32

[
U∗(ψ(1)k )2ψ1

m + 3U |ψ(1)k |2ψ(1)∗m + 64J |ψ(1)m |2ψ(1)k

+ 64A|ψ(1)k |2ψ(1)k

]
δ1 = k, δ2 = (−1)k . (17)

The indices k,m = 1, 2 with k �= m run over the two sublattices A and B respectively, and the
indices j = 1, 2, 3, . . . stand for the different orders of expansion.
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Before we continue, it is important to stress that, due to the absence of the magnetic field in
the dispersion relation (see equation (5)), a gap is opened up in the system either by the single-
anisotropy term or the Dzyaloshinsky–Moriya antisymmetric exchange term or by both. This
is an unusual phenomenon because very often in antiferromagnetic chains, one of the roles of
the external applied magnetic field is to open up the gap. Here it is not necessary. This result is
also important in the sense that there are some materials such as RbCoCl3·2H2O [42] where it
happens that the exchange energy parameter (J ) is very weak as compared to the Dzyaloshinsky
exchange constant (D). In such a case the gap is induced by the antisymmetric exchange and
the anisotropy interaction.

3. Solitary excitations

We now rewrite equation (12) in the following form:
(

ih̄
∂

∂ t
− ω1

) (
ih̄
∂

∂ t
− ω2

)
ψ
( j)
1 − G1G∗

2ψ
( j)
1 =

(
ih̄
∂

∂ t
− ω2

)
φ
( j)
1 − G1φ

( j)∗
2 (18)

(
ih̄
∂

∂ t
− ω2

)
ψ
( j)
2 − G2ψ

( j)∗
1 = φ

( j)
2 . (19)

For j = 1, we obtain the equations
(

ih̄
∂

∂ t
− ω1

) (
ih̄
∂

∂ t
− ω2

)
ψ
(1)
1 − G1G∗

2ψ
(1)
1 = 0 (20)

(
ih̄
∂

∂ t
− ω2

)
ψ
(1)
2 − G2ψ

(1)∗
1 = 0, (21)

which are linear wave equations with solutions

ψ
(1)
1 = B (x1, x2, . . . , t1, t2 . . .) exp[i (kx − ωt + α0)] + c.c., (22)

ψ
(1)
2 = −h

ω − ω2
ψ
(1)
1 + c.c., (23)

h = SU

(
−2 − iηk + η2k2

2

)
(24)

and the dispersion relation is

2h̄ω± = 3J S + 2A (1 − 2S)± {
(J S)2 + 4S2

(
J 2 + D2

) (
4 − η2k2

)}1/2
(25)

where B is an arbitrary complex function of the slow scales to be determined. Equation (22) is
the long wavelength approximation of equation (5). For j = 2, we have
(

ih̄
∂

∂ t
− ω1

) (
ih̄
∂

∂ t
− ω2

)
ψ
(2)
1 − G1G∗

2ψ
(2)
1 =

(
ih̄
∂

∂ t
− ω2

)
φ
(2)
1 − G1φ

(2)∗
2 (26)

(
ih̄
∂

∂ t
− ω2

)
ψ
(2)
2 − G2ψ

(2)∗
1 = φ

(2)
2 . (27)

Using (22) and (23), we obtain
(

ih̄
∂

∂ t
− ω1

) (
ih̄
∂

∂ t
− ω2

)
ψ
(2)
1 − G1G∗

2ψ
(2)
1

= ih̄ (ω1 + ω2 − 2ω)

(
∂B

∂ t1
− cg

∂B

∂z1

)
exp (i [kx − ωt]) (28)
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where cg = ω′(k) is the group velocity of linear waves. The right-hand side of equation (28)
is a secular term [40, 41]. To apply the perturbation theory, the function B must satisfy the
following equation:

∂B

∂ t1
− cg

∂B

∂x1
= 0. (29)

From equation (29) we deduce that

B = B (ξ, x2, . . . ; t2 . . .) with ξ = x1 + cgt1. (30)

We conclude that the waves travel with group velocity on the slow scales of space and time.
The solutions of equations (26), (27) are

ψ
(2)
1 = B (ξ, x2, . . . ; t2 . . .) exp [i (kx − ωt + α0)] + c.c. (31)

ψ
(2)
2 = − 1

ω − ω2

[
h B exp {i (kx − ωt + α0)} −

(
ihcg

ω − ω2
+ SUη + iSUη2k

)
∂B

∂ξ

]

× exp {i (kx − ωt + α0)} + c.c. (32)

For j = 3, we obtain the equations
(

ih̄
∂

∂ t
− ω1

) (
ih̄
∂

∂ t
− ω2

)
ψ
(3)
1 − G1G∗

2ψ
(3)
1

= (ω1 + ω2 − 2ω)

(
ih̄
∂B

∂ t2
+ 1

2
ω′′ (k)

∂2 B

∂ξ 2
+ λ |B|2 B

)
exp (i [kx − ωt]) (33)

(
ih̄
∂

∂ t
− ω2

)
ψ
(3)
2 − G2ψ

(3)∗
1 = φ

(3)
2 (34)

where

ω′′ (k) = 2S2η2 |U |2 + 2h̄2c2
g

ω1 + ω2 − 2ω
, cg = ω′ (k) , ξ = x + cgt (35)

λ = 3

(ω1 + ω2 − 2ω)

{
− (Uh∗ + U∗h)((ω − ω2)

2 + (h + h∗))
4(ω − ω2)2

+ 2(ω − ω2)

(
A + J S

(
U + U∗

2

)
ω − ω1

ω − ω2

)}
− 3

ω1 + ω2 − 2ω

×
{

2
(h + h∗)2

(ω − ω2)

(
J + AS

(
U + U∗

2

)
ω − ω1

ω − ω2

)
− (Uh∗ + U∗h)

2

×
[(

1

2
+ 1

32S

)
(h + h∗)2 +

(
1

16S
+ 1

)
(h + h∗)2

(ω − ω2)2
+ 1

48S

]}
. (36)

Application of perturbation theory [40, 41] forces the second member of equation (33) to
be zero, and then function B satisfies the equation

ih̄
∂B

∂ t2
+ 1

2
ω′′(k)

∂2 B

∂ξ 2
+ λ|B|2 B = 0. (37)

Equation (40) is a nonlinear Schrödinger equation which is completely integrable and has
an exact solution if we use the inverse scattering transformation [40, 41]. A single-soliton
solution of (37) is

B =
(

c2
0ω

′′(k)
μ2λ

)1/2

sec h
{
c0

[
x − x0 − (

cg + c1ω
′′(k)

)
t
]}

× exp {i [(k + c1) x −�t − ϕ0]} (38)

� = ω + c1cg + 1
2

(
c2

1 − c2
0

)
ω′′(k). (39)
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Here, the parameters c0, c1, x0, ϕ0 are integration constants. Equation (38) describes a
wavepacket which travels with velocity cg + c1ω

′′(k). If c1 = 0, then the solitary excitation
frequency given in equation (38) reduces to � = ω − 1

2 c2
0ω

′′(k). For k = 0, πa and
k = π

2a (cg = 0), for the ‘acoustic branch’ and the ‘optical branch’, the solitary excitation
frequency displays four values, i.e.

�max

(
k = π

2a

)
= ωmax − 1

2
c2

0ω
′′
max > ωmax,

�− max (k = 0) = ω− max − 1
2 c2

0ω
′′
− max > ω− max

�min (k = 0) = ωmin − 1
2 c2

0ω
′′
min < ωmin

�− min

(
k = π

2a

)
= ω− min − 1

2
c2

0ω
′′
− min < ω− min.

(40)

It is therefore clear that these solitary excitation frequencies enter into the gap of the linear
dispersion relation in equation (5) and denote the solitary localized modes in an AFM with DM
interaction such as BaCu2M2O7 (M = Si,Ge) etc.

The configuration of the spin for the solution with a single solitary wave h is obtained:

〈
S A

lZ

〉 = S − c2
0ω

′′(k)
μ2λ

sec h2
{
c0

[
x − x0 − (

cg + c1ω
′′(k)

)
t
]}

(41)

〈
SB

lZ

〉 → −S + S3 A2c2
0ω

′′(k)(4 + k2a2)

4λ(ω − ω2)2
sec h2

{
c0

[
x − x0 − (cg + c1ω

′′(k))
]}
. (42)

Equations (41) and (42) show explicitly magnon localization in our AFM. They are solitary
excitations in the system studied. Needless to say, these results were obtained thanks to the
Holstein–Primakoff transformation, the coherent state ansatz and the time dependent variational
principle that leads to two partial differential equations. It is very difficult to solve these
equations because of the nonlinearity and discreteness. But using the method of multiple
scales helps with reducing these equations to an envelope function equation and then we force
the amplitude function to satisfy a nonlinear Schrödinger equation (see equation (37)). This
latter equation plays an important role in many nonlinear phenomena and has been widely
studied. When looking at equation (37) it is realized that the coefficient ω′′(k) that is defined
in equation (35) plays the role of the dispersion phenomenon that a given wave may face
while propagating in such a system. This is certainly attested to by its frequency dependence
and hence the wavevector dependence of the linear spin wave. However, the presence of the
nonlinear term with the coefficient λ would help generate solitary magnon localization in an
antiferromagnet with a DM interaction term. On the other hand, we mention that the spin
configuration of equation (42) appears with the possibility of a resonance denominator. This
can be understood as the signature of a possible resonance in the system that would lead
to a transition between the ground state and the first excited state. This would confirm the
presence of the Haldane gap in such a system with a possibility for spin configurations changing
from a nontopological structure to a topological shape, this being followed by the occurrence
of a resonant kink. Another possibility is that this may lead to a complete delocalization
of the magnetic excitation in the case of the absence of equilibrium between the dispersion
phenomenon and nonlinearity in the system. Further details on this aspect will be given in a
later paper.

4. Summary

In this paper we have investigated the existence of solitary excitations in a model of an
AFM with DM antisymmetric exchange interactions. By introducing the Holstein–Primakoff
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transformation and the coherent state ansatz we obtain two partial nonlinear and coupled
differential equations. We used the method of multiple scales to reduce theses equations to a
nonlinear Schrödinger equation, whose solutions and properties are well known. The obtaining
of the spatial configuration of the spin proved the existence of the solitary excitations in the
system studied. It is important to mention that taking into account the DM term also led to
finding the frequency of the solitary excitations in the gap of the linear wave as in the case of
the AFM system. This gap is opened up in the system either by the single-anisotropy term or
by the Dzyaloshinsky–Moriya antisymmetric exchange term or by both, unlike the case for the
isotropic AFM system. Since the approach used here is semi-classical, it should be clear that
the result cannot be used to deal with an S = 1

2 quantum spin chain such as CuGeO3. This
poses the problem of the consistency of the method of coherent states for solitary excitation
in the FM and AFM. In the case of the FM the consistency of the semi-classical treatment has
been examined [14–16]. The nonlinear modified terms in the equation of motion of coherent
amplitude are strongly constrained by a relation between the spin magnitude ε (=S−1/2) and
the characteristic length of the soliton λ0. Skrinjar et al [12] showed that it is impossible
to establish a direct relation between ε and λ0. They could not avoid the inconsistency of
the two-parameter theory of solitons in magnetic systems. The approach used here for the
study of solitary excitations in AFM with DM interaction is consistent and systematic. We
were also able to predict a gap in the AFM with DM interaction as in [34] whenever our
method was different. Finding some frequencies of the solitary excitations in the gap of
linear waves can be understood as a prediction of a signature of the gap soliton in such an
AFM with antisymmetric exchange. Due to a challenge as regards the consistency of results,
further theoretical, computational and experimental investigations are strongly encouraged,
with the aim of investigating details of these soliton bearing systems, trying to establish a more
quantitative picture.
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